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1. Introduction23

One of the most fruitful and successful ways of development of the description of the24
non-equilibrium phenomena is served by a method of the non-equilibrium statistical operator25
(NSO) [1, 2, 3]. In work [4] new interpretation of a method of the NSO is given, in which26
operation of taking of invariant part [1, 2, 3] or use auxiliary «weight function» (in terminology27
[5, 6]) in NSO are treated as averaging of quasi-equilibrium statistical operator on distribution28
of past lifetime of system. This approach is consistent with the conducted Zubarev [2] obtaining29
NSO by averaging over the initial time.30

This interpretation of NSO gives him physical sense of the account of causality and31
allocation of a real final time interval in which there is a given physical system. New32
interpretation leads to various directions of development of NSO method which is compared, for33
example, with Prigogine’s [7] approach, introduction of the operator of internal time,34
irreversibility at microscopically level.35

In [5] source in the Liouville equation enters in the modified Liouville operator and36
coincides with the form of Liouville equation suggested by Prigogine [7] (the Boltzmann-37
Prigogine symmetry), when the irreversibility is entered in the theory on the microscopic level.38
We note that the form of NSO by Zubarev in the interpretation of [4] corresponds to the main39
idea of [7] in which one sets to the distribution function  q which evolves according to the40
classical mechanics laws, the coarse distribution function  =q ( is operator) whose41
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evolution is described probabilistically since one perform an averaging with the probability42
density pq(u),  acts as an integral operator.43

In Kirkwood’s works [8] it was noticed, that the system state in time present situation44
depends on all previous evolution of the non-equilibrium processes developing in the system. In45
[5, 6] it is specified, that it is possible to use many «weight functions». Any form of density of46
lifetime distribution gives a chance to write down a source of general view in dynamic Liouville47
equation which thus becomes, specified Boltzmann and Prigogine [5, 6, 7], and contains48
dissipative items.49

If in Zubarev’s works [1-3] the linear form of a source corresponding limiting exponential50
distribution for lifetime is used other expressions for density of lifetime distribution are giving51
fuller and exact analogues of “integrals of collisions». Explicit account of violation of time52
symmetry (a finite lifetime, its beginning and end) is introduced.53

In work [9-10] it is shown, in what consequences for non-equilibrium properties of system54
results change of lifetime distribution of system for systems with final lifetime. In [9-11] the55
various dependence of the probability density of time past life pq(u) from the age of the system56
are considered, u=t-t0, t is current time, t0 is the moment of the birth of the system. In [11] also57
pq(u,t) as dependence on the current time is considered. In [11] this dependence is chosen58
piecewise continuous form, where in one time slot value pq(u) has a single species, in the other59
– the other. Perhaps we have the more general situation when the function pq(u,t) is continuous60
in the current time of the argument t. This case is considered in this paper – in general and for61
specific task of function pq(u,t). We show the effect of this function on the physical62
characteristics of the system: flows and entropy production.63

64

2. New interpretation of NSO.65

66
In [1-3] the logarithm of the Nonequilibrium Statistical Operator is introduced through67

operation of taking an invariant part of the operators Fm(x,t+t1)Pm(x,t1) concerning evolution68
with Hamilton function H, i.e. transition from the logarithm of quasi-equilibrium statistical69
distribution (in a terminology [2]) lnq(z;t+t’,t’) (z is the point in phase space describing a state70
of system at a microscopic mechanical level) to the logarithm of NSO71

ln(z;t)= 


0

dt’exp{t’}lnq(z;t+t’,t’)dt’, (1)72

where73

lnq(z;t1,t2)=-(t1)-


n

j 1

dxFj(x,t1)Pj(zx,t2); (2)74

P0(z;x)=H(z;x); P1(z;x)=p(z;x); Pi+1(z;x)=ni(z;x); (3)75
F0(x,t)=(x,t); F1(x,t)=-(x,t)v(x,t);  Fi+1(x,t)=-(x,t)(i(x,t)-miv2(x,t)/2);76

(t)=lndzexp{-


n

j 1
dxFj(x,t)Pj(zx)}. (4)77

Here H(z;x) is dynamic variable density of energy, ni(z;x) are density of particles for the i-th78
component, p(z;x) is pulse density; (x,t) plays a role of local reverse temperature, (x,t) is the79
local chemical potential, v(x,t) is the mass speed, mi are masses of i-th particles, x are the spatial80
coordinates (here pulses also can be included). The second argument t2 in q(t1,t2) designates81
dependence on time through Heizenberg representation for dynamic variable, on which the82
function q(t,0) can explicitly depend. Other choice of the variable Pm(z|t) is also possible (see83
for example [5]). The choice of the variables (3) corresponds to local-equilibrium distribution84
[1-2] (for the description of a hydrodynamic stage of a nonequilibrium process). The parameters85
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Fn(t) are chosen so that true average of starting set of values Pn were equal to their quasi-86
equilibrium average87

<Pn>t=<Pn>t
q=Sp(q(t)Pn). (5)88

Thus the local integrals of motion are chosen in a retarded form, which in [1] is related to89
causality conditions in a formal problem of the scattering theory and theory of Bogoliubov’s90
quasi-averages. From the complete group of solutions of Liouville equation (symmetric in time)91
the subset of retarded "unilateral" in time solutions is selected by means of introducing a source92
in the Liouville equation93

/ t+iL(t)=-((t)-q(t,0)), (6)94
which tends to zero (value 0) after thermodynamic limiting transition. Here L is Liouville95
operator; iL=-{H,}=k{(H/pk)(/qk)-(H/qk)(/pk)}; H is Hamilton function, pk and qk96
are pulses and coordinates of particles; {…} is Poisson bracket.97

In [2] the operation of taking an invariant part (1) is provided by physical meaning of98
averaging on initial condition. The assumption is made that the evolution of system with equal99
probability can begin from any initial condition (t)t=to=(t0)= q(t0,0) (where  is projection100
operator [2]) in an interval from t0 up to t, which is considered large enough (that became an101
insignificant detail of an initial condition, as dependence on the initial moment of time t0 is102
nonphysical). The state (t) observable in the moment t is equal to an average on the initial103
moments of time t0 from the solution of an initial value problem for the statistical operator (or104
function of distribution) exp{-iL(t-t0)}q(t0,0) for an enough large interval of time t-t0, necessary105
for damping the initial nonphysical states. In [1-2] the equality of integrals in Abel's and in106
Cezaro's sense is used, and the relation for NESO average on initial states is rewritten as107

(t)= 


t

(1/<>)exp{-(t-t0)/<>}exp{-iL(t-t0)}q(t0,0)dt0. (7)108

It is possible to assume that the system evolves as isolated from the state q(t0,0) making109
random transitions with exponent probability w(t,t0)=(1/<>)exp{-(t-t0)/<>} (where110
<>=1/ after V) and to interpret it as influence of a "thermostat" [2]. In [5] functions111
w(t,t0) are considered in a general view. The properties of these "weight functions" [5] are112
investigated. Other (very many) choices of the weight function w are possible [5].113

In [4, 9-11] other interpretation of functions w(t,t'), operation (1) and NSO is given.114
Having done in (7) the replacement t1=t0-t, rewrite (7) as115

(t)= 


0

(1/<>)exp{t1/<>}exp{iLt1}q(t+t1,0)dt1=116




0

(1/<>)exp{-y/<>}exp{-iyL}q(t-y,0)dy, (8)117

where in the second equality (8) arguments t1 is replaced by -y. Thus t0-t=-y; t=t0+y, i.e. the118
current time t is represented as the sum of the initial moment t0 and value y, which represents119
lifetime of system (random value). The Liouville operator (in a classical case) affects on120
dynamic variable Pn leaving values of temporary arguments in Fn equal t0=t-y. The expression121
(8) corresponds to averaging of value exp{-iyL}q(t-y,0) with probability density (1/<>)exp{-122
y/<>}. Last value coincides with the distribution density function of time of the first exit from123
set of states (lifetime) in a limiting case for one class ergodic states in the circuit of state124
lumping of complex systems [16] (see also [17]). In the renewal theory [18] or in the theory of125
reliability this value corresponds to the density of probability of non-failure operation. In the126
ratio (8) the value <>= -1 are interpreted as the average lifetime of the finite nonequilibrium127
system, i.e. the average lifetime of the random values Pj at the description of the system by the128
nonequilibrium distribution (1).129
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Except for exponential density of probability (10), as density of distribution of lifetime the130
Erlang distributions (special or general) for n classes of ergodic states (so, for n=2,131
pq(y)=1exp{-1y}+(1-)2exp{-2y}) can be used, gamma-distributions etc. (see [19-20]), and132
also amendment taking into account subsequent terms of asymptotic expansion series [16, 17].133
The value (1/<>)exp{-y/<>} in expression (8) we shall replace by pq(y) - density of134
probability of system lifetime (or time of non-failure operation).135

Thus the lifetime enters in NSO describing any physical systems, and probability136
distribution density function pq(y) is interpreted as the lifetime distribution of the system. All137
values included in NSO get physical sense. It is possible intelligently to choose expressions for138
pq(y) (replacing w(t,t0) from [5, 6])). This interpretation proves to be true by that: 1) the lifetime139
is equal y=t-t0; 2) the existing finiteness of the lifetime of real systems should take into account140
by averaging on pq(y).141

The average lifetime of the system <> tending to infinity after thermodynamic limiting142
transition is explained by the fact that the lifetime of infinite system is also infinite. The quasi-143
equilibrium distribution (2) itself, as well as Gibbs distribution, does not contain lifetime. But144
the experience shows that all real systems have finite lifetime and are temporary irreversible. It145
is possible to find an explanation of paradox of reversibility of Newton's dynamics and146
irreversibility of real complex systems described by this dynamics, for example, in works [5-7,147
12-15]. Mathematical operations similar to (8) for the logarithm of distribution (as (1)), or -148
more generally (for pq(y)):149

ln(t)= 


0

pq(y)lnq(t-y,-y)dy=lnq(t,0) - 


0

(pq(y)dy)(dlnq(t-y,-y)/dy)dy (9)150

it is possible to find in [18], [19], where it is shown, how it is possible to construct from random151
process {X(t)} the set of new processes, introducing the randomized operational time. It is152
supposed that to each value t>0 there corresponds the random value (t) with the distribution153
pt

q(y). The random values X((t)) form new random process, which, generally speaking, need154
not to be of Markovian type any more. In (9) integration by parts in time is carried out at155
pq(y)dyy=0=-1; pq(y)dyy=0; at156

pq(y)=exp{-y}; =1/T=<>-1, (10)157
the expression (9) passes in NSO [1,2].158

Thus the operations of taking of invariant part [1], averaging on initial conditions [2],159
temporary coarse-graining [8], choose of the direction of time [5, 21], are replaced by averaging on160
lifetime distribution. The logarithm of NSO (1) is equal the average from the logarithm of quasi-161
equilibrium distribution (2) on the system lifetime distribution. As in [22] we set some162
estimation (or management) about values Pj. The task of a estimation or management163
corresponds to some information on values Pj. Let's assume, that this information consists in164
assumptions about the finiteness of system lifetime and about exponential distribution165
pq(y)=exp{-y}. We shall note that for the logarithm of nonequilibrium distribution ln(t),166
given by equality (9), the equation (6) is valid (after replacement  / t on - /y and partial167
integration the rhs of (6) is equal to dln(t)/dt). It is true also initial condition (t0)=q(t0,0) [2],168
if in (9) we assume that ln(t0-y,-y)=0 at y>0, as at the moment of time, smaller than t0, the169
system does not exist.170

Besides the Zubarev’s form of NSO [1-3], NSO Green-Mori form [23] is known, where171
one assumes the auxiliary weight function [5] to be equal W(t,t`)=1-(t-t`)/t;172
w(t,t`)=dW(t,t`)/dt`=1/t; =t-t0. After averaging one sets . This situation at pq(u)=w(t,t`)173
coincides with the uniform lifetime distribution. A source in Liouville equation takes the form174
J=lnq/. In [1] this form of NSO is compared to the Zubarev’s form.175

It is possible to specify many concrete expressions for lifetime distribution of system,176
each of which possesses own advantages. To each of these expressions there corresponds own177



UNDER PEER REVIEW

5

form of a source in Liouville equation for the nonequilibrium statistical operator. Generally for178
pq(y) this source looks like179

J=pq(0)lnq(t, 0)+ 


0

( pq(y)/ y)(lnq(t-y, -y))dy.180

Setting the form of the function pq(u) reflects not only the internal properties of the system,181
but also the impact of the environment on the open system, its characteristics of the interaction182
with the environment. In [2] a physical interpretation of the function pq(u) in the form of the183
exponential distribution is given as a free evolution of an isolated system governed by the184
Liouville operator. In addition, the system undergoes random transitions whereas the185
corresponding representing point in the phase space switches from one phase trajectory to186
another with exponential probability under the influence of a "thermostat", the random time187
intervals between consecutive switches growing infinitely. This occurs if the parameter of the188
exponential distribution tends to infinity after taking thermodynamic limit. But real physical189
systems are finite-sized. The exponential distribution is suitable for the description of190
completely random systems. The impact of the environment on a system can have more191
organized character, for example, for a system in the stationary nonequilibrium state with input192
and output fluxes; so different can be the interaction between the system and environment,193
therefore various forms of the function pq(u) different from the exponential form can be set.194

One could name many examples of explicit defining of the function pq(u). Every195
definition implies some specific form of the source term J in the Liouville equation, some196
specific form of the modified Liouville operator and NSO. Thus the family of NSO is defined. If197
distribution pq(u) contains n parameters, it is possible to write down n equations for their198
expression through the parameters of the system. From other side, they are expressed through199
the moments of lifetime. There is the problem of optimum choice of function pq(u) and NSO. In200
[24] to determine the type of function pq(u) the principle of maximum entropy for the evolution201
equations with the source is used.202

You can make various assumptions about the form of the function pq(u), while receiving203
different expressions for the source in the Liouville equation and nonequilibrium system204
performance.The main difference of this paper from [4, 9-11] and expressions (1), (8), (9) is205
that the function pq(u) replaced by the function pq(u, t), as pt

q(y) in [19].206
207
208

3. Additional terms in the expressions for the fluxes and entropy production209
210
211

If instead of depending on pq(u) the dependence of pq(u, t) is considered, it changes the212
Liouville equation for NSO ρ(t). In [2-3] expression for )()()( ttt q  is obtained in the213
form214





t

qqq
tt dttiLtQttUet ')'()'()',()( )'(   , (11)215

where })(exp{)',(
'

 dQttU
t

t
qq  , qqQ 1 is the operator, additional to the projection216

operator Kawasaki-Gunton. Effects of the latter on the quantum or classical variable A is217
defined by218

t
n

q

n

t
nnqq P

t
PTrAAPTrTrAtAt






)(
})()({)()(   ,219

(...)Tr is the operation of taking the trace [3]. The operation (...)Tr can be interpreted as the220
integration over the phase space of N particles with subsequent summation over all N [3]. For221
the case of dependence pq(u,t) instead of (11) we obtain222
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 



 

t

qqqqq
tttp dtduuuttuptiLtQttUet q '}),'()',()'()'(){',()(

0

)')(,0(  , (12)223

where
t

tup
u

tup
tuptptup qq

qqq 







),(),(
),(),0(),( . In comparison with [4, 9-11] an224

additional term
t

tupq


 ),(

is appears.225

We obtain an expression for the fluxes226

 


 



n

t

mnmn
tttp

q
t

m

t
m dttttFtteP
t

P
q ')]',()'()',([)')(',0( ,                   (13)227

where the first term in square brackets is obtained in [2, 3]228

 
1

0

1 )}'()'()'()',()({)',( ttItttUtIdxTrtt x
qn

x
qqmmn  , (14)229

nnn PtPPtQtI  ))(1()()(  are dynamic variables of flows, P(t) is Mori projection operator230
acting on the classical and quantum dynamical variables on the rule231

 
n

t
nnt

n

q
t

q
t PP

P
A

AAtP )()(



, and the second term is a correction to that obtained in [2,232

3] expression. The appearance of such an additive caused a general form of the density function233
of the lifetime distribution. In this case,234

235














0

)},'()',()({]
'

)',()',(
)',()',0([)',( duuutttUtITr

t
tup

u
tup

tuptptt qqm
qq

qqm  . (15)236

For pq(u) in exponential form (10) 0 qp and, therefore, the addition of (15) is zero.237
To obtain the expression for entropy production, which also contains an additional term in238
comparison with the expressions derived in [2, 3]:239

 


 
nm

t

mnmnm
tttp dttttFtttFe

dt
tdS q

,

)')(',0( ')]',()'()',()[()( .                                      (16)240

241
242

4. Estimates of the additional terms243
244

To estimate the value of supplements in terms of flows and entropy production, we use245
the explicit expression for the function ),( tupq obtained in [24] with maximum entropy246
method. Under certain approximations obtained in [24] expression for the distribution of the247
lifetime can be written as248

249

))()((
)0(

1

)0(
),(

0
/

/

tRtRe
F

p
ep

tup
ii

ii

Fuc

i

q

Fuc
q

q








,                                                     (17)250

251

  




m k

i
kiki

kmjmjk
jm

j
tZF

PPPP
PPPPPP

tFtFtR )(ln)()()( 000252





mimi

mjmj

m j
j PPPP

PPPP
tF )( 0 ,                                                 (18)253
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where we use the rule Zubarev-Peletminsky [1, 5, 25, 26]254

)(),,...,1(,
1

zw
dt
zdMiPCPw

M

j
jiji



 



, (19)255

where Cij are c-numbers. When considering the local density of the dynamical variables, Pi256
values may depend on the spatial variables. Then the quantities Cij may also depend on the257
spatial variables or may be differential operators;258


j

jjii tFCС )( 0 . (20)259

From the normalization condition we find260
)()(;/)1()0( 0

/ 2

tRtRrreFp ii FrC
iq   .261

For the distribution of (17) the expression ),( tupq , appearing in (15), is equal262

)](
),(

),0()[,(),(
t
r

F
rC

F
tup

F
Ctptuptup

i

i

i

q

i

i
qqq 


 .263

The value 1)( 

i

i

F
C is close to the average lifetime 0tt  , and expression264

t
r

tt
r

t
r

F
rС
i

i












0

. At sharp changes in time value r this value may take a large value.265

In the linear approximation in r266

)();1(),(;/)0(),0(
22

0 t
rar

F
eape

F
araetupFCaptp

i

ua

q
au

i

au
qiiqq 





 .267

268
5. Conclusion269

270
In [16-19] the lifetime of the system are considered as functionals of a random process, is271

the moment to achieve a stochastic process that characterizes the system, a certain threshold,272
such as zero. This definition is used in the present work. In [11, 27-28] lifetime is included in273
the range of common physical quantities acting as assessment or management (in terms of274
information theory) for the quasi-equilibrium statistical operator, provides additional275
information about the system. Considered in [11, 28] distribution containing lifetime as276
thermodynamic parameter may be related to the conduct of [4] and in this paper the277
interpretation NSO, as average over the distribution of the lifetime of the system.278

Let's notice, that in a case when value dlnq(t-y, -y)/dy (the operator of entropy production σ279
[1]) in the second item of the right part (9) does not depend from y and is taken out from under280
integral on y, this second item becomes σ<Γ>, and expression (9) does not depend on form of281
function pq(y). There is it, for example, at q(t)exp{-t}, =cons. In work [29] such282
distribution is received from a principle of a maximum of entropy at the set of average values of283
fluxes.284

Form of the density distribution of the lifetime is essential for the kind of expressions for285
nonequilibrium system performance. A more detailed description pq(u) compared with the286
limiting exponential (10) allowing you to describe the real stages of the evolution (and a287
systems with small lifetimes). Each of the distributions for the lifetime have a certain physical288
meaning. In queuing theory the various disciplines of service correspond to different289
expressions for the density distribution of a lifetime. In the stochastic theory of storage by these290
expressions correspond to different models of the output and input into the system.291

It is shown that the record of dependence of this function on the current point in time leads292
to additional terms in the expressions for the average flows, of entropy production and other293
characteristics of a nonequilibrium system.294
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If type of source in Liouville equation for a non-equilibrium statistical operator in the form295
of Zubarev [2] it is possible to compare with a linear relaxation source in Boltzmann equation,296
more difficult types of sources, got from other distributions for lifetime of the system, it is297
possible to compare to more realistic type of integral of collisions, that is explained by the298
openness of the system, by its co-operation with surroundings and finiteness of lifetime of the299
system, and also coarsening for physically infinitely small volumes.300

In [30] it was noted that the role of the form of the source term in the Liouville equation in301
NSO method has never been investigated. In [19] it is stated that the exponential distribution is302
the only one which possesses the Markovian property of the absence of contagion, that is303
whatever is the actual age of a system, the remaining time does not depend on the past and has304
the same distribution as the lifetime itself.305

The physical sense of averaging on entered lifetime distribution of quasi-equilibrium system306
as it was already marked, consists in the obvious account of infringement of time symmetry and307
loss (reduction accessible) the information connected with this infringement, that is shown in308
occurrence the value of average of entropy production <S (t)> not equal to zero, obviously309
reflecting fluctuation-dissipative processes at the real irreversible phenomena in non-310
equilibrium systems. The correlations received in the present paper generalize results of311
statistical non-equilibrium thermodynamics [1, 2, 3] and information statistical thermodynamics312
[4-5] as instead of weight function of a form exp{t'} contain density of probability of lifetime313
of quasi-equilibrium system which as it was already marked, can not coincide with exponential314
distribution (in the latter case it coincides with weight function from [1, 2, 3]). For example, for315
system with n classes of ergodic states limiting exponential distribution is replaced with the316
general Erlang. In research of lifetimes of complex systems it is possible to involve many317
results of the theory of reliability, the theory of queues, the stochastic theory of storage318
processes, theory of Markov renewal, the theory of semi-Markov processes etc.319

As it is specified in [31], existence of time scales and a stream of the information from slow320
degrees of freedom to fast create irreversibility of the macroscopical description. The321
information continuously passes from slow to fast degrees of freedom. This stream of the322
information leads to irreversibility. The information thus is not lost, and passes in the form323
inaccessible to research on Markovian level of the description. For example, for the rarefied gas324
the information is transferred from one-partial observables to multipartial correlations. In work325
[4] values =1 / <> and pq (u) = exp {-u} are expressed through the operator of entropy326
production and, according to results [31], - through a stream of the information from relevant to327
irrelevant degrees of freedom.328

Introduction in NSO to function pq(u) corresponds to specification of the description by329
means of the effective account of communication with irrelevant degrees of freedom. In the330
present work it is shown, how it is possible to spend specification the description of effects of331
memory within the limits of method NSO, more detailed account of influence on evolution of332
system of quickly varying variables through the specified and expanded kind of density of333
function of distribution of time the lived system of a life.334

In many physical problems finiteness of lifetime can be neglected. Then 1/<> 0.335
For example, for a case of evaporation of drops of a liquid it is possible to show [32], that non-336
equilibrium characteristics depend from exp{y2}; y=/(22)1/2, 2 is the second moment of337
correlation function of the fluxes averaged on quasi-equilibrium distribution. Estimations show,338
what even at the minimum values of lifetime of drops (generally - finite size) and the maximum339
values  size y=/(22)1/210-5. Therefore finiteness of values <> and  does not influence on340
behaviour of system and it is possible to consider =0. However in some situations it is341
necessary to consider finiteness of lifetime <> and values >0. For example, for nanodrops342
already it is necessary to consider effect of finiteness of their lifetime. For lifetime of neutrons343
in a nuclear reactor in work [4] the equation for =1/<> which decision leads to expression344
for average lifetime of neutrons which coincides with the so-called period of a reactor is345
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received. We have in work [33] account of finiteness of lifetime of neutrons result to correct346
distribution of neutrons energy.347
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